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Abstract

Background: The use of real-world data (RWD) provides several advantages to randomized clinical trials (RCT), including a larger sample size, longer 
duration, availability of multiple comparators and clinical endpoints, and lower costs. A main drawback of the use of RWD versus RCT are potential 
biases due to known, but also hidden confounders that can distort the results of RWD based studies.

Objective: Development of a method to demonstrate the robustness of results of RWD studies by quantitively evaluating the potential impact of hidden 
confounders on the results of already completed studies.

Methods: The already published study of comparative effectiveness of dimethyl fumarate (DMF) in multiple sclerosis versus different alternative 
therapies [1] is used to re-evaluate their results in the presence of a strong hidden confounder. To estimate the impact of these potential confounders we 
evaluate known confounders on a similar dataset as Braune et al. [1]. The sensitivity of these results is assessed using the methodology of by Lin et al. [2].

Results: The findings of the effectiveness analysis of Braune et al. qualitatively remain accurate - even in presence of potential large hidden confounders. 
Only very large, therefore unlikely hidden confounders could reverse the results of the RWD study tested.

Conclusions: Potential biases in RWD need to be actively dealt with but should not lead to the automatic dismissal of consideration of RWD, since 
these biases can be addressed quantitatively. Our approach of quantitative bias analyses showed that the robustness of the results can be objectively 
demonstrated by quantitatively evaluating the impact of an hidden confounding bias on the statistical significance of the null hypothesis tested. 
If identified effects are robust to large hidden confounding biases, RWD can deliver valid insights which cannot be obtained in RCTs due to their 
methodological limitations.
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Introduction

Clinical research increases the number of diagnostic and 
therapeutic options in many medical fields, and even difficult-to-treat 
neurological diseases, such as multiple sclerosis, have seen substantial 
recent progress [3]. This leads to the availability of numerous drug 
comparators for a new treatment entering the field. Because drug 
approval by FDA and EMA is based on usually two phase III RCTs with 
a limited number of active comparators, it is obvious that these pivotal 
trials do not provide sufficient evidence on comparative effectiveness 
covering the entire available spectrum of drugs for a given indication. 
Further limitations of RCTs are limited sample sizes, short duration 
of the trials, and patient populations that are not representative of the 
real world (e.g. over-sampling of younger individuals). RWD can be 
based on large cohorts of actual patients and studied over a larger time 
span. Less frequent adverse events are likely to remain undetected in 

RCTs (see, for example, the withdrawal of rofecoxib from the market 
as discussed by Bresalier et. al.) [4]. An additional benefit of RWD is 
the lower cost per obtained data point, once appropriate IT systems 
are in place [5]. Evidence from real world data (RWD) thus gains 
importance to fill this knowledge gap, reflected also in the ongoing 
initiatives by the regulatory authorities in the US (FDA 2021) [6] 
and Europe (see Bakker et al.) [7]. To support medical insights pre-
specification of study design and data reliability is important [8].

If results from RWD based comparative effectiveness studies 
shall be part of regulatory decision-making processes [9], medical 
guidelines, and recommendations, then the quality of patient-
level data, data management and analysis, and outcome reporting 
must match standards established by RCT [10]. The issue of lack of 
randomization in RWD studies can be tackled by propensity score 
matching, enabling similar baseline characteristics of patient cohort 
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despite the absence of randomization in real-world treatment settings 
[11]. Alternative methods are also available [12]. However, even after 
such matching, several potential biases must be addressed if RWD are 
employed for comparative effectiveness analyses. We herein review 
these biases and provide a framework to evaluate the robustness of 
RWD results in the presence of potential hidden confounders.

Our work is based on several previous efforts to address 
confounding biases: Zhang et al. [13,14] reviewed statistical methods 
for the confounding bias in real-world data; Groenwold [15] simulated 
the impact of multiple unmeasured confounders, while Popat et al. 
[16] showed how biases due to data missingness, poorer real-world 
outcomes and confounding can be quantified. Sensitivity analysis can 
be found in He et al. [17]. Mathur and VanderWeele [18] argued that 
meta-analyses can produce misleading results if the primary studies 
suffer from confounder bias. Recently, Leahy et al. [19] presented 
a quantitative bias analysis to assess the impact of confounding. 
While their study focused on the question how strong a confounder 
would need to be to reverse the results (e.g., see a protective effect 
where there is harm), our work focuses on the question how strong a 
confounder can be tolerated without leading to an incorrect rejection 
of the null hypothesis. We developed a method that can indicate 
when a reasonably likely hidden confounder may cause a result to be 
significant, while the comparison would not lead to a significant result 
if the confounder were to be removed. We believe that this question 
is of great practical relevance for many working in the field of RWD 
analysis; evaluation the impact of hidden confounders systematically 
can prevent false interpretation of spurious results.

To determine the impact of a potential hidden confounder bias, we 
firstly rely on known confounders to estimate the necessary effect size 
of a hidden, potentially strong confounder, to distort study results (i.e., 
evaluating if the null hypothesis is still rejected after the confounder 
has been accounted for). For the test case in this manuscript, we choose 
already published RWD in the field of multiple sclerosis, employed in 
a comparative effectiveness study by Braune et al. [1]. In the field of 
multiple sclerosis, confounding factors in RWD have been thoroughly 
evaluated and identified [20]. Known biases have been described in 
prior work in multiple sclerosis RWD [21].

Background: Biases in RWD

A bias in medical data might lead to incorrect models and results, 
potentially harming patients. In the following we discuss major biases 
in RWD and how they are managed. Table 1 provides a summary of 
these biases along the data analysis process.

Data collection is prone to errors. Physician’s or patient’s reports 
may be (systematically) incorrect, creating a so-called observer bias, 
resp. recall bias. Both biases are measurement biases and cannot be 
corrected from an analytical perspective. Continuous tracking of the 
patient and standardized, quantifiable recording procedures in-time 
can reduce this bias, and IT platforms with automated data integrity 
and feasibility checks can improve data capturing quality, as employed 
in the case of the data base used in our example [22,23].

At the other end of the data analysis process, the output itself 
might be biased. Reporting bias is the most prominent output bias. 
It occurs when the reporting of research findings depends on their 
direction and nature. Studies with no significant effects rarely get 
published. To avoid this bias, all analyses must be pre-planned in a 
study protocol, which should be registered before any analyses are 
carried out (preferably for RWD-based studies in the ISPOR RWE 
registry; see ISPOR, 2021) [24].

The core element of the data analysis process is the aggregation 
of data (Table 1). The strongest biases usually appear in that category, 
leading to skewed data and reporting of spurious effects. Sampling 
bias (also known as selection bias) and detection biases are the most 
prominent biases in that category. An example of the detection bias 
is that physicians might be more likely to look for diabetes in obese 
patients than in skinny patients. As a result, one may observe an 
inflated estimate of diabetes prevalence among obese patients. To 
prevent the detection bias, core data elements need to be evaluated for 
a broad spectrum of individuals in a systematic manner. Selection bias 
occurs when the patients are assigned to different treatments in a non-
random procedure. Here individual factors, like doctors´ experience 
or attitudes of doctors and patients, but also systemic factors like 
care algorithms or differences in availability results in the selection 
of a skewed treatment selection. Conclusions drawn from such a 
population sample cannot be generalized to the overall population.

Detection and selection biases can lead to (hidden) confounder 
bias. In RCT these biases are controlled for by inclusion and exclusion 
criteria as well as randomized assignment to interventional trials arms. 
In medical RWD-based studies many confounders, such as gender, 
age, physical condition, and others are known, depending on the field. 
The lack of randomization can be compensated by using a cohort 
matching technique such as pairwise propensity score matching of 
Rosenbaum and Rubin [25] employing these known confounders. For 
a non-mathematical introduction see [26-28]. Practical guidance is 
given by Loke and Mattishent [11]. Still the challenge of controlling 

    

   

 

Aggrega�on Output 

Table 1: Discussion of Biases.
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the impact of hidden confounders remain, which is discussed in the 
following sections.

Confounding Bias

Example

A confounding bias occurs when an attribute (confounder) which 
is not included in the model influences (some of) the treatment as 
well as the output. In other words, the relationship between the 
treatment and the outcome is distorted by the confounder. Assume, 
for example, that patients who smoke tend to get a certain treatment, 
and smoking results in a higher disease activity, but smoking is not 
captured as relevant factor. This scenario leads to an underestimation 
of the treatment’s efficacy (Figure 1).

To avoid such misjudgments, we need to account for all possible 
confounders. For example, a medical registry should contain standard 
attributes (e.g., age, gender, duration of disease, kind and duration of 
therapies, disease progression). Additionally, it cannot be ruled out 
that hidden confounders have an impact. It is difficult to evaluate the 
impact of these confounders, due to their invisible nature. Lin et al. [2] 
suggested a method to assess the sensitivity of regression results in the 
presence of hidden confounders. The following subsection shows how 
results with confidence intervals can be derived assuming a hidden 
confounder.

Theory Confounding Bias

Let  be a binary response variable (such as disease 
progression) and  is the application of a certain treatment. 
Some covariates  (e.g., age, gender) are measured while  
is a hidden binary confounder (assumed to be independent of ). Let 
the probabilities of the hidden confounder differ in the treatment and 
the control group  and . 
If the probabilities are identical, the treatment group and the control 
group are equally affected by the confounder, such that the estimation 
of the treatment effect remains unbiased.

Consider the log linear model 
. As the 

hidden confounder is not estimated, the observed model 
 leads to estimates , 

,  which are potentially biased from the true parameters , , . 
Lin et al. found that the relationship between the observed treatment 
coefficient  and the actual treatment coefficient  was given by

with  being the relative risk of disease associate with the 
hidden confounder . Similar results can be found for the logistic 
regression and for more general (such as normal distributed) 
confounders [2].

Real-world Application

Known Confounders

To determine the possible impact of hidden confounders, it 
is helpful to first evaluate the known confounders. This obviously 
depends on the context of the study. As the initial population of 
Braune et al. [1] was not available on patient level, we use a current 
data cut of the German NeuroTransData (NTD) Multiple Sclerosis 
registry, including patients with same inclusion characteristics as in 
the previously published population.

Our real-world application investigates relapse activity of patients 
with MS (PwMS). To estimate the impact of known confounders, we 
utilized a cross-sectional dataset sourced from the inception of the 
year 2022 (index date beginning of 2022) including 5679 active PwMS 
being on therapy on either Fingolimod, Interferon, Natalizumab or 
Ocrelizumab. Our binary depended variable states if there are relapses 
in the previous year or not (yes/no). We run a logistic regression of 
relapses on known established confounders (gender, age, Expanded 
Disability Status Scale (EDSS) at index date, number of treatments 
before index date and time since diagnosis to index date), as suggested 
by Karim et al. [20]. The result is given in Table 2.

The most important confounder is gender. Based on our data, 
women have 24%  greater relative risk of relapses 
compared to men. 10 years increasing age leads to a 20% reduction 
of the relative risk. An EDSS score higher by one unit increases the 
relative risk by 15%.

Controlling these confounders as well as hidden confounders 
becomes crucial, if RWD are employed to comparatively analyze 
effectiveness of several drugs in a certain indication. While propensity 
score matching baseline variables can control for aggregation biases in 
RWD, still hidden confounders continue to challenge the robustness 
especially of comparative results.

Let there be a hidden confounder with a strong negative effect on 
the outcome. Assume first that it is equally distributed between all 
treatments. In this case, the confounder affects the treatment outcomes 

Figure 1: Example of confounding bias. Smoking (S) correlates with treatment choice (T) 
and response (Y).

Estimate Std. Error Pr(>|z|)

(Intercept) -0.1451 0.1176 0.2176

female*** 0.2156 0.0631 0.0006

age*** -0.0217 0.0028 <0.0001

EDSS_score*** 0.1391 0.0206 <0.0001

n.treatments -0.0294 0.0230 0.2012

time.yrs 0.0052 0.0105 0.6200

Table 2: Results of logistic regression model of the event of a relapse on known 
confounders: Gender (female), Age (age), Expanded Disability Status Scale (EDSS), 
number of DMTs before index date (n.treatment) as well as time since diagnosis of MS in 
years (time.yrs). The point estimate is given as well as the standard deviation (Std.Error) 
and the corresponding p-value (Pr(>|z|)).
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of different disease modifying therapies (DMTs) in relapsing remitting 
multiple sclerosis (RRMS) with the same magnitude in each treatment 
group, and the estimated efficacy of the treatments will be unbiased. 
Suppose now that the hidden confounder is more frequent in one 
treatment group than the other. Even if two treatments have a similar 
efficacy, one treatment will seem to be worse than the other.

It is crucial to determine how unequal known confounders are 
distributed, which is shown in Table 3 for each of the four DMT 
evaluated. For the therapies fingolimod (FTY), interferons (IFN), 
natalizumab (NAT) and ocrelizumab (OCR) the share of females, 
share of higher disability represented by higher EDSS (Expanded 
Disability Status Scale, mean EDSS score above the group mean 2.2), 
share of high age (age above the group mean of 39 years) is given. 
The share of females is relatively equally distributed over all therapies 
ranging from 62% to 76%, similar for the higher EDSS score (50% 
to 69%). The largest deviation in distribution is given for higher age, 
ranging from 37% to 59%.

In summary, well-known confounders in the field of MS 
treatments are found to increase the odds of responding to different 
DMTs by up to 25% and might be slightly unequal distributed (e.g. 
40% to 60%) in different treatment groups. With this information, we 
can now check the results of previous findings in the literature in the 
presence of a potential hidden, hidden confounder.

Hidden (Potential) Confounders

For this exercise, we consider the results from the paper of Braune et 
al. [1]. The authors analyzed the comparative effectiveness of delayed-
release dimethyl fumerate (DMF) against other treatments in patients 
with relapsing-remitting multiple sclerosis (RRMS) using propensity 
score matching. The results supported the superior effectiveness of 
DMF compared to interferons (IFN), glatiramer acetate (GA) and 
teriflunomide (TERI) and showed similar effectiveness to fingolimod 
(FTY). The pairwise comparisons of the paper are shown in the blue 
plot in Figure 2 (based on Figure 1 in Braune et al.). For IFN, GA and 
TERI, the rate ratio is significantly below 1, indicating better results 
for DMF.

Blue dots show hazard rate ratio as given in Braune et al. [1]. 
Orange triangles represent ratios given a large hidden confounder 
( ). The population of the therapies 
interferon-ß (IFN), glatiramer acetate (GA), teriflunomide (TERI), 
fingolimod (FTY) and the FTY (European) label are shown.

The propensity score matching accounts for the known established 
confounders such as sex, age, EDSS, disease duration, number of 

DMTs, and number of relapses in the past 12 and 24 months. While 
these are certainly the most influential confounders (Karim et al.) 
[20], an impact of additional hidden confounders cannot be excluded. 
Using the analysis described above, one can test if the results of Braune 
et al. [1] still hold in the presence of a hidden confounder. We know 
from our considerations above that common well-known confounders 
increase the odds by up to 25%. Consider an example of an extremely 
large confounder increasing the odds by 100% - or equivalently four 
perfectly correlated hidden confounders, each increasing the relative 
risk by 25%. In that case, we model the binary confounder with 
. Note, that if the confounder appears at an equal rate in both groups 
(e.g. ), the measured comparative effectiveness is unbiased. 
Hence, assume that the hidden confounder is far more present in the 
comparator group ( ) than in the DMF group ( ). 
Given our analysis of known confounders in the previous section, a 
more unequal distribution of the hidden confounder in between the 
comparator and treatment group appears unlikely.

In such a scenario, the hidden confounder leads to an increase 
of effectiveness difference improperly in favor of DMF. We use the 
methodology presented by Lin et al. [2] to adjust for that effect. Figure 
2 (orange triangles) presents the results in the presence of such an 
hidden confounder. For direct comparison also see Table 4.

Because the impact of the hidden confounder leads to worse 
results for the comparator group (lower rate ratios), the rate ratios 
increase after the adjustment. To highlight IFN, the rate ratio increases 
from 0.59 to 0.68. Still, the qualitative conclusions of Braune et al. [1] 
that DMF has a higher efficiency than IFG, GA and TERI and similar 
efficiency to FTY remains, and the null hypothesis of equal effects of 
these two treatments is correctly rejected.

An arbitrarily strong hidden confounder can, of course, always 
change the results. See Table 5 for a comparison between DMF and 
IFN with hidden confounder  and different distributions  
in the treatment and comparator group. For an equal distribution 
of the hidden confounder in the DMF and IFN population, i.e. 

, the hazard ratio is given by 0.59 (as found by Braune et 
al.) [1] as both groups are equally exposed to the confounder. For a 
moderate divergence in both groups, e.g.  the 
rate ratio is given (as mentioned before) by 0.68. For strong difference 
between both groups, with the DMF group being free of the hidden 

Share (%) FTY IFN NAT OCR

Female 73% 73% 76% 62%

Higher EDSS 60% 50% 64% 69%

Higher age 53% 47% 37% 59%

Table 3: Distribution of well-known confounders (gender, above average EDSS score 
of 2.2 and above average age of 39 years) given different treatments fingolimod (FTY), 
interferon-ß (IFN), natalizumab (NAT), ocrelizumab (OCR). The strongest difference 
between treatment populations can be seen for above average age, ranging from 37% 
(NAT) to 59% (OCR).

Figure 2: Hazard rate ratio of DMF vs. comparator. Rate ratios below 1 favor DMF.
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confounder ( ) and the confounder group suffering strongly of 
the confounder ( ) the effectiveness of DMF compared to 
the comparator reverses after the adjustment. IFN would then actually 
be more effective than DMF and only appear worse due to the hidden 
confounder. As Braune et al. [1] already control for all major known 
confounders, it seems unlikely that such a hidden confounder with 
such a massive impact exists. Note that the treatment differences 
of Braune et al. [1] further increase when the DMF group is more 

exposed to the confounder than IFN group, e.g. .

For some fixed confounder size  we can observe when the result 
loses significance. Figure 3 presents a graph for two different strengths 
of the confounder . On the axis the frequency of the 
confounder in the comparator group (x-axis) and DMF group (y-axis) 
is given. The crosses indicate the maximum identified inequality in the 
distribution of the known confounders age, gender and EDSS between 
treatments (see also Table 3).

The practically most relevant question is under which 
circumstances the results of Braune et al. lose significance. For a certain 
confounder strength and inequality in the groups the significance of 
the found results by Braune et al. will not hold anymore. A confounder 
with  (not shown in Figure 3) is too weak and cannot destroy 
the significance. That is noteworthy, because a 20% increase in relative 
risk is about the effect size found for the strongest known confounder 
(gender). An hidden confounder with  impact the significance 
of the result, if the confounder is far more present in the comparator 
group (e.g. ) than the DMF group (e.g. ). For very 
large confounders the results could be reversed. A confounder with 
strength  and a similar occurrence as the risk factor age 
would lead to the result being not significant anymore.

Summary and Conclusion

Findings in RWD can be distorted by several biases, including the 
confounding bias. We herein show how the methodology presented 
by Lin et al. can be applied in practice to analyze the significance of 
results in the presence of potential hidden confounders. First, we 
determined the effect size and distribution of known confounders. 
Our results underline the strong impact of the known confounders 
in multiple sclerosis, in line with previous reports (Karim et al.) and 
provide a quantitative base for the evaluation of the impact of hidden 
confounders. This analysis showed that a potential hidden confounder 
would have to exceed the impact of known confounders to such an 
extent, that its existence can be ruled out with almost certain probability. 
The method employed allows for different assumptions of equal and 
unequal distributions in the groups compared to understand the 
necessary strengths of hidden confounders to distort study results in 
different scenarios. Firstly, it is tested if the results hold in the presence 
of an hidden confounder as large as the known confounder. Then a 
threshold corridor can be defined, indicating quantitatively the limits 
of strengths of hidden confounder necessary for study results to lose 
their statistical significance. Considering previous work in this field, 
this method adds a new dimension by evaluating if the null hypothesis 
is still rejected after the confounder has been accounted for.

Comparison vs. DMF Hazard Rate (CI)
as published

Hazard Rate (CI)
after confounder adjustment 

IFN 0.59 (0.42,0.83) 0.68 (0.48,0.94)

GA 0.65 (0.48, 0.87) 0.74 (0.55,0.99)

TERI 0.56 (0.37,0.86) 0.64 (0.42,0.98)

FTY 0.73 (0.52, 1.02) 0.83 (0.60,1.17)

FTY label 0.94 (0.52,1.72) 1.08 (0.59,1.97)

* Note that the presented confidence bands differ slightly to the referenced paper due to 
different estimation procedures.

Table 4: Hazard rate ratio for relapse activity during treatment with DMF vs. comparator 
including confidence intervals* (CI) excluding and including the adjustment of a binary 
confounder. The population of the therapies interferon-ß (IFN), glatiramer acetate (GA), 
teriflunomide (TERI), fingolimod (FTY) and the FTY (European) label are shown.

p1=0.0 p1=0.2 p1=0.4 p1=0.6 p1=0.7 p1=0.8 p1=1.0

p0=0.0 0.59 (0.43,0.83) 0.71 (0.51,0.99) 0.83 (0.6,1.16) 0.95 (0.68,1.32) 1.01 (0.72,1.4) 1.07 (0.77,1.49) 1.19 (0.85,1.65)

p0=0.2 0.49 (0.35,0.69) 0.59 (0.43,0.83) 0.69 (0.5,0.96) 0.79 (0.57,1.1) 0.84 (0.6,1.17) 0.89 (0.64,1.24) 0.99 (0.71,1.38)

p0=0.4 0.42 (0.3,0.59) 0.51 (0.36,0.71) 0.59 (0.43,0.83) 0.68 (0.49,0.94) 0.72 (0.52,1) 0.76 (0.55,1.06) 0.85 (0.61,1.18)

p0=0.6 0.37 (0.27,0.52) 0.44 (0.32,0.62) 0.52 (0.37,0.72) 0.59 (0.43,0.83) 0.63 (0.45,0.88) 0.67 (0.48,0.93) 0.74 (0.53,1.03)

p0=0.8 0.33 (0.24,0.46) 0.4 (0.28,0.55) 0.46 (0.33,0.64) 0.53 (0.38,0.73) 0.56 (0.4,0.78) 0.59 (0.43,0.83) 0.66 (0.47,0.92)

Table 5: point estimates and confidence bands for hazard ratios for dimethylfumarat (DMF) vs. interferon-ß (IFN) adjusting for a hidden confounder with  given the frequency of the 
confounder in the DMF group ( ) and the comparator group ( ). Result remains significant for italic cases.

Figure 3: Illustration of threshold at which IFN loses significance to DMF for different 
strength of the hidden confounder with  and different distribution of the 
confounder in the dimethylfumarat (DMF) group ( ) and the comparator interferon-ß 
(IFN) group ( ).
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The presented method has some limitations. The first is the 
distribution assumption of the confounder. Lin et al. show that the 
method holds for binary and normally distributed confounders. For 
more extreme distributions with heavy tails, the applied correction 
might be insufficient. We further assume that hidden (or unmeasured) 
confounders have a similar distribution and strength as known 
confounders. However, if there is evidence that there are hidden 
confounders that are very unevenly distributed in the treatment 
populations or the hidden confounders might be of extreme strength, 
the method presented should not be applied.

The approach presented herein to battle the confounder bias can 
help increase the robustness and reliance of results from RWD. If 
observed effects are significant and the presented sensitivity analysis 
can show the robustness of the results in presence of a substantial 
confounding bias, decision makers can be more confident to rely on 
real-world evidence. RWD should thus not be dismissed a priori due 
to the “ghost of confounding,” because this ghost can be kept in check 
by quantitative methods shown herein applied to large-scale and 
robust datasets.
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